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Abstract

We explore a novel scheme of modeling clause information by defining
is-in-same-clause relations between token pairs in order to enrich the pre-
dictions of a topological field tagger. In this work, we develop a fast
and accurate model to classify these relations and evaluate it against a
state-of-the-art constituency parser. Moreover, we show that a statis-
tical transition-based dependency parser benefits from the information
provided by our model.

1 Introduction

While German is known to be a language with a relatively free word order and
therefore complex syntactical structure, there are certain regularities on a clause
level that are traditionally explained by the topological field model (Herling,
1821; Erdmann, 1886; Drach, 1937; Hohle and Schone, 1986). Depending on
the position of verbal components, a relatively fixed sequence of topological
fields is found, where some fields impose limitations on what can be placed
inside.

Predicting the topological field structure of a sentence is a fruitful first step
for parsing its full syntactical structure. In constituency parsing it has been
used to reduce the search space of an HPSG algorithm (Frank et al., 2003) and
in dependency parsing it has been demonstrated by de Kok and Hinrichs (2016)
that the local decisions of a transition-based statistical dependency parser can
be improved through information about the topological field structure.

Dipper (2014) showed on the TIGER corpus (Brants et al., 2002) that, al-
though full syntactic annotations are present, it is not a trivial task to infer the
correct topological structure. Currently the only large scale, hand-annotated
treebank including topological fields is the TtiBa-D/Z (Telljohann et al., 2004).
Thus, linguists, interested in e.g. extracting statistics over the topological struc-
ture of sentences, are limited to this treebank.

The work on predicting the topological field structure of sentences can be
divided into three strains: Parsing, Chunking and closely related to chunk-
ing, Sequence Tagging. Kiibler (2005); Maier (2006); Cheung and Penn (2009)
trained probabilistic constituency parsers to predict topological field structure,
Veenstra et al. (2002); Liepert (2003) applied different methods such as Finite
State Transducers and Memory Based Learners to topological field chunking and
de Kok and Hinrichs (2016) employed a neural sequence tagging architecture to
topological field modeling. In parsing, the field structure is either predicted im-
plicitly as part of the full constituency structure or explicitly by only predicting
the clause and field nodes.

Constituency parsers have to make a trade-off between expressive power and
speed; they are either restricted to projective structures or otherwise have to deal
with high runtime. Typically, the constituency structure of German sentences
is not projective, 43.69% of the sentences in TiiBa-D/Z include crossing edges.
While the non-projectivity is mostly limited to punctuation, there remains a



fair amount of other content, like parenthetical constructions, that introduces
crossing edges.

Sequence taggers, in contrast, only assign a topological field tag to each to-
ken, these field tags yield no information with regard to the underlying structure
that these fields were derived from. All hierarchy is lost because taggers only
predict flat sequences, but those sequences can be based on non-projective trees.

Considering information available at the token level, a difference between
the two approaches becomes apparent: the sequence tagging approach directly
associates structural information with each token, while the parsers provide tree
structures that such information can be derived from. Surface level information,
as given by sequence taggers, plays a role in token-driven analyses of sentences
like transition-based dependency parsing. Transition-based dependency parsers
build a tree representing the syntactic structure of a sentence by introducing
directed and labeled relations between tokens. Thus, they have to decide, solely
based on features available for tokens or token pairs, whether to introduce a
dependency relation or not.

Token-driven dependency parsers have recently been used to produce de-
pendency treebanks based on large-scale web corpora (Schéfer, 2015; de Kok,
2014). Although sentences with hundreds of tokens are not particularly fre-
quent in newspaper texts that are usually used to develop NLP systems, they
are somewhat prevalent in texts from the web. For this reason, the runtime
complexity for all involved systems is to be considered. If a dependency parser
should, for instance, be supplied with information about clause structure in ad-
dition to topological field information, both could be derived from constituency
trees. Constituency parsers often have the undesirable property of cubic run-
time growth, which makes it hardly feasible to employ such a parser to provide
the dependency parser with structural information. The runtime of sequence
taggers, on the other hand, only grows linearly in relation to sequence length
and they provide a flat sequence of topological field tags that are associated
with tokens and can directly be used by the dependency parser. Unlike the
constituency parser, a sequence tagger cannot easily provide clause information
and is thus also not fit to provide information about clause membership.

As a solution, we propose binary is-in-same-clause relations between tokens
as a novel scheme to directly model the clause structure of sentences without
any overhead. The definition of this scheme is quite simple and almost trivial: If
two tokens are located within the same clause, the relation holds. In that sense
only the annotation of the clause structure is required to train a classifier, which
requires far less manual work than annotating a corpus with constituency trees
and in turn opens our scheme to low resource languages, where large treebanks
with constituency annotations might not be prevalent.

In this thesis, we extend the recent work in topological field tagging by
de Kok and Hinrichs (2016) who used a neural sequence tagger to assign a
topological field label to each token in a sentence. We use this sequence tagger’s
output to determine the is-in-same-clause relation of any token pair with an
accuracy higher than 97%.

Our model is best fit when downstream applications, like the previously



described transition-based dependency parsers, only require local information
about the clause structure. Moreover, our model can be effiently applied to
searching a dependency treebank, since such queries typically rely on token-
level features or relations between tokens.

The contributions of this work can be enumerated as:

e Novel scheme for modeling binary clause relations between Tokens
e Developing a fast and accurate model to predict these relations.
e Evaluation of our model and comparison to a constituency parser.

e Application of our model to dependency parsing.

Following this introduction, we will first describe the clause and field struc-
ture of German sentences before going into existing approaches and topics re-
lated to topological field and clause prediction. After diving into the related
work, we will discuss our novel scheme to model clause relations and finally
introduce our own models. Then we will shortly describe the data used for our
experiments and report our preprocessing procedures. The main part of this
thesis will be finished by evaluating the models considered in this work. This
evaluation will mostly be intrinsically and quantitative, but will also include an
extrinsic part where we test the different models’ predictions on a dependency
parser. The thesis will close with the conclusion and an outlook to future work.

2 Clause and Field Structure of German

German Clause Types

Vi1 LK (MF) (VC) (NF)
Ist  er das gewesen?

V2 VF LK (MF) (VO) (NF)
Das st er gewesen.

VL (C) (MF) VvC (NF)

dass er das gewesen sei.

Table 1: Overview of German clause types with some simplifications. Usu-
ally punctuation is not annotated within the topological field structure but is
included here for demonstration purposes. Non-obligatory fields are parenthe-
sized. VF - pre field, LK - Left sentence bracket, C - Complementizer, MF -
middle field, VC - verbal complex, NF - post field



VROOT

SIMPX
|
\ \ \ \ \
VF LK MF vC NF
SIMPX
|
\ \ \
C MF vC
Freudenthal wollte  gestern  nichts dazu  sagen , ob [...] etwas aufgefallen sei
Freudenthal wanted yesterday nothing about it say , whether |[...] something recognized be

Figure 1: Clause and field structure with an embedded clause. Some words and
sentence final punctuation are elided for space reasons.

Sentence 20 from TuBa-D/Z: “Freudenthal did not want to say anything yester-
day about, whether she found anything [...]”

2.1 Overview

German clauses can be divided into three types, each one corresponding to
a specific position of the finite verb: verb-initial (V1), verb-second (V2) and
verb-last (VL). Within the clause types, the sequence of topological fields is
predictable (Hohle and Schone, 1986) (see Table 1 for a simplified overview). In
V1 and V2 clauses, the finite verb component occupies the left sentence bracket
(Linke Satzklammer — LK) while the non-finite verb parts are found in the right
sentence bracket (Rechte Satzklammer or Verb Komplex — VC). In VL clauses,
the LK is replaced by the complementizer (C). Together, the sentence brackets
delineate the other topological fields.

The prefield (Vorfeld — VF) precedes the LK and allows just a single con-
stituent. This constituent is often the subject of the clause but can also be
replaced by virtually any other constituent if the subject is realized in the mid-
dle field (Mittelfeld — MF). The MF is located between the sentence brackets,
the LK to the left and if present the VC on the right. If no VC is given, the
right boundary for the MF is set by the postfield (Nachfeld — NF). The MF can
contain multiple constituents which often include verb arguments, adverbs and
the like. The NF is located at the end of clauses and allows arbitrary numbers
of constituents. It is the place where clausal constituents, e.g. relative clauses,
with their own topological field structure are often found. Additionally, a co-
ordination field (KOORD) preceding all other fields is assumed for conjunction
on the clause level. Finally, a field for the left-dislocated phrase in resumptive
construction (Linksversetzung — LV) is placed between KOORD and the initial
field in V1 and V2 sentences. Telljohann et al. (2006, chap. 3.1.1) offers a
summary of the above described structures.



SIMPX
|

VF LK MF

Kontrolliert werden die Geschéftsfithrer von den gewéhlten Revisoren [...]
Supervised are  the execulives by the  elected revisors  |[...]

Figure 2: Topological field structure with topicalized VC. End of the sentence
is elided for space reasons.
TiBa-D/Z sentence 19: “The executives are supervised by the elected revisors

[.]7

2.2 Challenging Phenomena

In Table 1 and the previous section, we described a rather simple, sequential
picture of clause structure in German. In the following, we will briefly introduce
some phenomena that complicate the topological field model, such as recursion,
coordination and topicalization.

Recursion. Since subordinate clauses participate in the topological structure
of the matrix clause but also include their own topological structure, the topo-
logical structure of German is recursive and hierarchical. The topological field
model only makes assumptions about the sequence of fields within a clause.
Through the recursive nature of the structures, the surface sequence of topolog-
ical fields can thus differ on a sentence level. See Figure 1 for an example.

Fronting. The surface sequence of topological fields within a clause also does
not always adhere to the previously described sequences. For example, topical-
ization is a challenge since it moves fields or parts of fields into the VF at the
beginning of the clause. Figure 2 shows part of a sentence including a fronted
VC. In a non-topicalized variant the subject “die Geschéftsfithrer” would be
placed in the VF and the VC would be moved to a position after the MF, yield-
ing the for declarative sentences expected V2 sequence: “Die Geschéaftsfiihrer
werden von den gewéhlten Revisoren kontrolliert [...]"

Coordination. Furthermore, coordination can be described on the topolog-
ical field layer, resulting in sequences different from the one predicted by the
topological field model. Figure 3 shows a tree where the subject “Die neue
Addresse”, located in the VF of the clause, is shared by the verbs “war” and
“wird”. Both finite verbs are located in their own LK and are followed by their
respective arguments in the MFs. According to the V2 sequence described in
Table 1, the clause should end after the MF of the first conjunct, but instead,



VROOT

SIMPX
\ | \
VF FKOORD
\ | |
FKONJ FKONJ
LK MF LK MF vC
|
Die neue Addresse war einst eine Bremer Stadtbibliothek - wund wird es wieder sein
The new address was once a  Bremen  town library - and will it again  be

Figure 3: Topological field structure with field coordination.
TiiBa-D/Z sentence 3923: “The new address was once a Bremen town library -
and will be it again.”

the sequence moves back to the LK and even moves one step further to a VC
in the final conjunct.

Coordination of elliptical constructions as in the example above are hard to
encode in terms of the topological field model as they could be described as two
clauses in one. The conjuncts cannot be classified as clauses of their own, as
one of the two would then lack its subject.

3 Related Work

In this section, we will discuss fields and methods that are relevant for modeling
clause and topological field structure such as constituency parsing, chunking
and neural sequence tagging.

3.1 Constituency Parsing

Constituency parsing is the process of constructing a constituency tree from a
sentence, representing the underlying syntactic structure according to a phrase
structure grammar. There are no inherent assumptions about what kind of cat-
egories can be part of such a grammar, as such clause and topological structure
can be encoded just as part of the grammar, or the grammar can be composed
solely of the clause and topological categories.

Kiibler (2005) and Maier (2006) are accounts of treating topological field
parsing as an intrinsic task in constituency parsing. Both trained PCFG parsers
that learned the topological structure embedded in the constituency structure.

Cheung and Penn (2009) on the other hand frame topological field parsing
as a form of shallow parsing where the task is to retrieve the clause and field
layers of constituency trees, thus omitting the phrasal nodes. They performed



experiments with the then state-of-the-art Berkeley parser (Petrov et al., 2006),
a latent variable-based parser. Latent variable-based parsers see a treebank as
a coarse approximation of an underlying, ideal, grammar. Through repeatedly
splitting and merging the categories, a better fit grammar is derived.

Recently a number of neural constituency parsers following an encoder-
decoder scheme have been proposed. In this scheme, an encoder produces a
vectorial, contextual, representation for each word in the sentence. Based on
these vectors a decoder then constructs a parse tree.

Stern et al. (2017) and Gaddy et al. (2018) use Long Short-Term Memory
networks (LSTM) (Hochreiter and Schmidhuber, 1997) as an encoder architec-
ture, while Kitaev and Klein (2018) apply a self-attentive encoder (Vaswani
et al., 2017) to compute contextual representations for the tokens. All of these
parsers use the output vectors of the encoder to represents spans in a sentence.
Based on those span representations a CYK (Younger, 1967) style chart-decoder
finally constructs the constituency trees. The time complexity of the decoder is
O(N3) where N refers to sequence length.

All models described in this section require projective trees that do not in-
clude crossing edges. Maier (2010) describe a parser that is capable of predicting
non projective constituency trees, but report extensive runtimes, growing expo-
nentially with sequence length.

3.2 Topological Field Chunking

A simple approach to modeling the topological field structure of a sentence is to
identify the sentence brackets LK and VC and define the other fields in relation
to the brackets. This approach has been referred to as topological field chunking
and it has been explored by several researchers.

Veenstra et al. (2002) applied a cascade of Finite State Transducers, a PCFG
parser and a memory based learner to identify the sentence brackets and com-
plementizers. Similarly, Liepert (2003) used Support Vector Machines to chunk
German sentences into the top-most topological fields. They approach the prob-
lem as a sequence tagging task and assign to each token either LK, VC, C or O.
While this approach does not produce a tree structure, it allows to draw some
conclusions with regard to the sentence structure, namely, after identifying the
sentence brackets, it is roughly possible to set the field boundaries in relation to
them. This breaks down in the presence of embedded clauses or other phenom-
ena where the field structure is not clear just from the location of the sentence
brackets.

3.3 Topological Field Tagging with Neural Networks

Artificial Neural Networks (ANNs) are a family of non-linear mathematical mod-
els, the simplest form of such an ANN defines a function:

(1) F(x) = g(xW +b)



where x is a d-dimensional input vector, W a d x m-dimensional matrix and b
a m-dimensional vector, with W and b being learned parameters. g is some
non-linear activation function such as the Rectified Linear Unit (ReLU, Nair
and Hinton, 2010).

Deep feed-forward ANNs are composed of multiple such layers where each
layer takes the previous layer’s output as input. Usually the parameters of each
layer are not shared. For instance, a n-layered feed forward network can be
formulated as:

(2) FE, = fu([-](f2(f1(x))))

Feed-forward networks require fixed-width inputs, i.e., following Equation 1,
the input x’s dimensionality must match the dimensions of W in order for
the matrix multiplication to succeed. Thus, the only reasonable way to apply
such simple feed-forward models to sequence labeling employs a sliding-window
technique where a fixed number of following and preceeding representations is
concatenated with the representation of the symbol to be classified. For each
position, this results in a vector of the same size which can then be classified
by the model. While it is feasible to train such a network and some context can
be captured, it “forgets” symbols that the windows has moved past and does
not take information into account from symbols that are not reached by it yet.
For instance, in topological field tagging, it is important to keep track of how
far the sequence of fields (see Table 2 has advanced and whether the sentence
brackets have been assigned. If a model has classified something as the LK of a
clause, it needs to be aware of this later on in the sentence in order to not assign
this same label again to another form that also appears to be a finite verb. A
feed-forward network has no way to keep track of the greater context within the
sentence.

Recurrent Neural Networks (RNN, Elman, 1990), on the other hand, are
a class of neural networks that can both process variable length inputs and
maintain an unbounded notion of memory throughout the sequence. RNNs have
feedback connections that inform the model at later positions about previous
outputs. At each position in the sequence, the input to the model includes both
the current symbol and the output at the previous position - the previous state
hi_;. Hence, its output at any point in the sequence is dependent on its history.
The formulation for the output state hy at a given timestep ¢ is similar to that
at Equation 1 but also includes the state h¢_1, which itself is dependent on
some earlier state:

(3) hy = f(hy_1,%¢)

Given that sequences that should be processed tend to be of finite length,
it is possible to repeatedly substitute h;—; for Equation 3 until the initial state
hg is reached and come up with a formula rather similar to Equation 2:

(4) hy = f(f(f(ho,X0),Xt-1), Xt)



The difference here is that a deep feed forward network’s layers are inde-
pendent of each other while there is a temporal dependence for an RNN. The
common training routine for RNNs, backpropagation through time (Rumelhart
et al., 1985; Werbos, 1990), uses the fact that the RNN can be unrolled in such
a manner and reuses the parameters W and b at each timestep.

As the virtual depth of the network grows with sequence length, it becomes
more and more challenging to actually train such a network due to the explod-
ing and vanishing gradients problems (see Goodfellow et al., 2016, chap. 10.2).
These problems were eventually addressed through LSTM networks (Hochreiter
and Schmidhuber, 1997), countering vanishing gradients through gating mech-
anisms.

Unidirectional RNNs, as described above, provide less temporal and struc-
tural information for symbols in the beginning of the sequence. Since the output
of each timestep is dependent on a previous output, an issue arises for the first
symbol in the sequence. There is no previous output of the RNN to be taken
into account, thus it is necessary to feed an artificial initial state. This spells out
to be problematic if the decision about a symbol in the beginning is dependent
on a symbol later on in the sequence. For example by projecting the topological
fields in Figure 2 onto the tokens, we get the following sequence:

(1) Kontrolliert werden die Geschéftsfithrer von [...]
Ve LK MF MF MF
Supervised are the executives by [..]

The executives are supervised by [...]

An RNN processing the sentence in a left-to-right manner would encounter the
word “Kontrolliert” without any contextual information, apart from the token
being at the start of the sentence. “Kontrolliert” at the beginning of a sentence
can be the start of a question like:

(2) Kontrolliert ihr das auch?
LK MF MF MF
Check you this too?

Do you check this, too?

which would place “Kontrolliert” into the LK as it is the finite verb of the
clause. To correctly produce the sequence in Example 1, a model has to identify
“Kontrolliert” as a participle which would require another token to be the finite
verb. In this case “werden” should be identified as such, but since the model is
not informed about the tokens later on in the sequence, it cannot come to this
conclusion.

A solution to this problem is the use of bidirectional RNNs (BiRNN, Schuster
and Paliwal, 1997) that process the sentence not in a single left-to-right pass but
also include a reverse, right-to-left pass that is independent of the first iteration.
By concatenating the corresponding states of the forward and backward RNN,



it is possible to get a context sensitive representation for each symbol in the
sequence. In sequence tagging these representations can then be projected to
the output space to assign an appropriate class to each symbol.

This architecture has been applied to various sequence labeling tasks such as
part-of-speech (POS) tagging (Ling et al., 2015) and named entity recognition
(Huang et al., 2015) but also to topological field tagging by de Kok and Hinrichs
(2016).

de Kok and Hinrichs (2016) developed a topological field tagger in order
to provide information about the field structure to a transition-based depen-
dency parser. Transition-based dependency parsers have to make local decisions
whether to introduce a dependency relation between two tokens or not. Fea-
tures therefore need to be available at a token level, or at least associated with
the token pair under consideration. To solve this they reduce the topological
tree structure to a flat sequence by projecting the hierarchically closest topo-
logical field’s label onto each token, if a token is not actually dominated by a
topological field, a special unknown label is assigned to it.

Their model stacks a unidirectional LSTM on top of a bidirectional LSTM
(BiLSTM Graves et al., 2005), the BILSTM’s input consists of concatenated
word and POS embeddings. The top LSTM is followed by an output layer with
a softmax activation function to obtain the probability distribution over the
topological fields.

While their model is well fit to provide token level annotations that can be
used by a dependency parser, it has a crucial shortcoming: The hierarchical
and recursive structure of clauses is entirely lost. It is impossible to determine
whether two tokens with the same field tag are actually located in the same
topological field or belong to fields with the same label, but in different clauses.

4 Classifying Clause Relations

‘ Freudenthal wollte gestern nichts dazu sagen ob [.] etwas aufgefallen sei
Freudenthal — 1 1 1 1 1 0 0 0 0 0 0
, 0 0 0 0 0 0 0 0 0 0 0
etwas 0 0 0 0 0 0 o — 1 1 1 1

Table 2: Simplified clause relation matrix corresponding to the tree in Figure 1.
Relations for one token per clause are depicted. 1 indicates the tokens are in
the same clause.

Sentence 20 from TuBa-D/Z: “Freudenthal did not want to say anything yester-
day about, whether she found anything |[...]”

Clause structure is commonly treated as an abstract layer within con-
stituency trees. For lexical approaches that require token-level annotations,
such abstraction is not necessary. We propose a novel scheme to directly model
clause structure by defining binary is-in-same-clause relations between token
pairs. While these relations are not fit to infer the hierarchical structure of
clauses, they allow to disambiguate the predictions of a topological field tagger
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w.r.t. whether two tokens belong to the same topological field or are actually
located in different clauses and thus different fields. See Table 2 for a simplified
relation matrix corresponding to the tree in Figure 1.

Based on the findings of de Kok and Hinrichs (2016), we hypothesize that
providing clause information in addition to topological field tags to a dependency
parser yields further improvements.

It is straightforward to extract the relations from constituency trees in a tree-
bank or from the predictions of a constituency parser, but e.g. in the previously
described case of a transition-based dependency parser, it would be excessive to
employ a constituency parser just to provide the information whether two to-
kens belong to the same clause. Our scheme enables models to directly classify
whether a token pair is located in the same clause without building a tree first
and inferring the relations from the tree.

Moreover, our formulation has the advantage of not requiring extensive,
manual labor in order to fully annotate a constituency treebank. Our scheme
merely requires the annotation of the clause-level which is far less complex
than annotating full trees. In low-resource languages without large annotated
corpora, our scheme is thus far more applicable.

5 Models

In the following section we will introduce our baseline model as well as our
proposed new model and some variants thereof. The baseline model is imple-
mented in the Python! programming language while all other models are written
in Tensorflow (Abadi et al., 2016) and Rust? (Matsakis and Klock I1, 2014). The
departure point for the following models is the topological field tagger by de Kok
and Hinrichs (2016).

Topo Model. As described in Section 3.3 the tagger of de Kok and Hinrichs
(2016) feeds pretrained embeddings for tokens and part of speeches to a BILSTM
with a unidirectional LSTM stacked on top. We then apply, in contrast to their
model, Batch normalization (Ioffe and Szegedy, 2015) to the outputs of the top
LSTM. Finally, the hidden states are projected to the output space in order to
retrieve the topological field tag for each token.

Baseline. Our Baseline model infers the clause relations on the basis of the
Topo model. After tagging a sentence, we iterate over the tokens while tracking
transitions between fields. Initially, all fields are accepted and the first clause
is introduced. Subsequent tokens are only added to this clause if they have the
same tag as the previous token or advance the sequence of expected topological
fields (see Table 1). Finally, we add the constraint that all punctuation signs
be placed in the same clause without any other content.

Thttps://www.python.org/
%https://www.rust-lang.org/
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Joint Model. The Joint model builds directly on top of the Topo model’s
batch normalization and output layers. The former layer’s output consists of
h-dimensional vectors for each timestep, in order to predict the clause relations
we concatenate these vectors with ¢-dimensional embeddings corresponding to
the predicted topological field for each token. Since we want to predict the
1s-in-same-clause relation of a specific token with each token following it in the
sentence, we create a representation of the token pair by concatenating their
h+t-dimensional vectors resulting in a (h+t)*2 combined vector. Each of these
token pairs is associated with a specific distance that can be derived by their
position in the sentence. To encode this distance we append a d-dimensional
embedding representing it and pass these (h + t) * 2 + d-dimensional vectors to
a dense layer with a ReLU activation function (Nair and Hinton, 2010). The
output of this dense layer is then fed to the output layer with a logistic function.
While training we calculate the categorical cross-entropy losses for both tasks
and minimize them jointly with the Adam optimizer (Kingma and Ba, 2014).

The variations Joint,owords and Joint,,pos are restricted to only POS em-
beddings or word embeddings as input. Further, for the Joint,,rieiqs model we
do not append any embeddings for topological fields to the output of the batch
normalization layer. In the Joint,,qrr model the topological field predictions
are replaced by gold data to retrieve the field embeddings.

During training the runtime of all Joint models grows quadratically with
sequence length since we predict a strictly upper triangular matrix with (N
N —N)/2 entries. As there is no temporal dependency between the classification
of the different token pairs, these operations can be parallellized. At inference
time, the models only need the output of the batch normalization layer to classify
a token pair, thus requiring runtime in dependence linear to the sentence length.
Subsequent token pairs from the processed sentence can be classified in constant
time.

Clause Model. Another variant of our model does not predict the topolog-
ical fields and classify the clause relations at the same time. Similarly to the
Joint,orields, we only combine the outputs of the batch normalization layer and
concatenate these with distance embeddings. Since the model does not predict
topological fields, we only optimize for the clause predictions. Apart from these
changes, the rest of the model, including runtime complexity, is identical to the
Joint model.

6 Evaluation

To evaluate our model we compare it to the self-attentive constituency parser by
Kitaev and Klein (2018) and to our baseline model which infers clause bound-
aries in a rule-based manner from the output of the previously described topo-
logical field tagger. In the following section, we first describe the data we use and
the preprocessing necessary for our experiments. We then intrinsically evaluate

12



the considered models and finally demonstrate how information about clause
relations can improve dependency parsing.

6.1 Data

We use the constituency-annotated version of TiiBa-D/Z? for all but the de-
pendency parsing experiments. For those we use the dependency-annotated
version of the same release. TiBa-D/Z is a relatively large, hand-annotated
treebank containing more than 95,000 sentences and roughly 1.8 million tokens.
It is composed of articles from the German newspaper TAZ*. Both clauses and
topological fields are annotated as interior nodes in the constituency structure.

A large fraction of the constituency trees in TiiBa-D/Z is non-projective (see
Figure 1 or Figure 2 for examples), in fact, more than 40% of the trees con-
tain crossing edges. Since many constituency parsers require projective trees,
TiiBa D/Z is also distributed in a linearized version, where trees were projec-
tivized by attaching nodes that introduce crossing edges at the highest non-
terminal node that allows for a projective structure.

If the non-projective version is taken as gold standard, only 91.74% of the
clause relations and 97.07% of the tokens’ topological fields are correctly rep-
resented by the projectivized treebank. Investigating the misplaced content
reveals that by far the biggest contributors to these errors are punctuation
signs. Cumulatively, punctuation accounts for 96.38% of incorrect relations and
96.62% of incorrect field tags. Discarding punctuation during evaluation shows
that 99.59% of the relations and 99.88% of topological field tags are represented
correctly in the linearized format. This is due to the fact that punctuation is
virtually always attached to the root node in TiiBa-D/Z.

The distribution of tokens over the topological fields is heavily imbalanced.
By far the largest part is located in the MF, followed by the VF and VC. Tokens
outside of the topological field structure (UNK) make up a sizable partition,
too. Within clauses, no punctuation sign is dominated by a topological field.
Additionally a fair amount of other tokens also end up without a topological field
dominating them. If punctuation is counted, this partition is ranking second
behind the MF. If punctuation is excluded, the UNKs remain a relevant size,
ranking just behind the LK with about 100,000 remaining tokens. Tokens are
very rarely immediately dominated by an NF, we suspect that this is due to the
fact that subordinate clauses are often located in the NF and tokens in such a
clause are assigned a label from their respective clause. Figure 4 shows the full
frequency counts.

The distribution of is-in-same-clause relations in the treebank is not as
skewed as that of topological fields, but still shows a preference of about 60%
towards not holding.

3Release 10
“https://www.taz.de
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Token distribution over Topological Fields
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Figure 4: Distribution of tokens topological fields in TiiBa-D/Z. UNK denotes
tokens that were not dominated by a topological field inside their clause. OTH-
ERS summarizes KOORD, LV and other infrequent fields. Punctuation exclu-
sively occurs outside of topological fields. About 100,000 tokens do not partake
in the topological field structure.

6.2 Preprocessing

All of the preprocessing tools were implemented in Rust and will be made pub-
licly available in the future.

Sequence Tagging and Clause Classification. Since topological fields and
clauses are annotated as interior nodes, they are not immediately available on
a token level. In order to assign to each token a topological field, we mostly
follow the scheme described in de Kok and Hinrichs (2016) but treat the unknown
label slightly different. They only assign this label to those tokens that were not
dominated by a topological field at all. In our projection scheme the unknown
label is assigned to those tokens that are not dominated by a topological field
within their respective clause.

We achieve this by reattaching each node that is not a phrasal node to the
closest topological field or clause node. For each node in the tree, we follow the
edges up towards the root until the reattachment point is found. After all nodes
are attached at the correct position of the tree, we remove all phrasal nodes.
Finally, we iterate over the terminal nodes in the shallow tree and the label of
the node immediately dominating the terminal to it. If the parent node is not
a field node but a clause node or the root, we assign the unknown tag.

The clause relations are derived by assigning a unique identifier to each clause
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node in a tree and projecting these identifiers onto the tokens. We annotate the
clause identifiers through a breadth-first traversal, starting at the root node,
keeping track of how many clause nodes have been encountered before. If a new
clause is found, we increment the counter and assign it to the new clause. In
our implementation each non-terminal node has direct access to the terminal
nodes it dominates. To assign the correct identifier to each token, we iterate
over the previously encountered clause nodes and assign that clause’s identifier
to all terminals derived from it. If a terminal is dominated by several clause
nodes, the assigned identifier is repeatedly overwritten until the hierarchically
closest clause identifier has been projected.

We follow the definitions in Telljohann et al. (2006) to determine whether a
node is a clause or field node.

Given the clause identifiers, it is fairly straightforward to annotate the clause
relations. We iterate over the tokens in the sentence and retrieve the clause
identifier. For each token, we iterate over all subsequent tokens and construct
a matrix of clause relations by comparing the clause identifier at the current
position with those at the later positions. If they match, the is-in-same-clause
relation holds. Annotating the full sentence with IV tokens in this manner results
in a strictly upper triangular matrix with (N * N — N)/2 entries, encoding the
clause relations for each token with all tokens following it. We do not build a
full matrix since determining the clause relation for a token with itself is trivial
and the relations are independent of directionality.

Parsing. In order to train the self-attentive parser (Kitaev and Klein, 2018),
we have to use the projectivized version of TiiBa-D/Z. We conduct experiments
with both the fully annotated, unaltered, treebank and with a treebank con-
taining shallow trees, where all phrasal nodes have been removed. The filtering
to construct the shallow trees is done in the same manner as described in the
previous section, but since assigning a unknown label to a token is not possible
in the same way, we insert non-terminal nodes with a special label above nodes
not dominated by topological fields. If there is a run of tokens outside of topo-
logical fields with the same parent node, we collect those nodes under a single
node. The examples in Section 2 are shallow trees without the insertion of new
nodes.

Setup. We shuffle the preprocessed corpus and split it into three sections, 30%
held out for validation, 10% for development and 60% for training. Further, we
use a 20% subset of the training set for some of our experiments to examine the
impact of corpus size on the different models.

The word embeddings fed as input to our models are a variation of the de-
pendency embeddings proposed in Levy and Goldberg (2014). In contrast to
the original dependency embeddings, we include subword information in the
same manner as fastText (Bojanowski et al., 2017) and do not collapse certain
dependency relations. Our word embeddings are trained with a derivation of
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finalfrontier® and will be made publicly available in the future. We selected the
word embeddings based on the findings of Piitz and Piitz (2019). The hyperpa-
rameters for our model and the word embeddings can be found in Appendix A.

All parser models are trained with the best hyperparameters for German
according to Kitaev and Klein (2018, Section 6.2). The models build word
representations in two ways: through an LSTM over the characters in the word
and by training domain-specific word embeddings. We stop the training after a
maximum of 30 hours or 100 epochs, whichever is reached first.

We evaluate the per-token accuracy on topological field tagging as well as
the per-relation accuracy on the clause classification. Although this puts the
constituency parser at a disadvantage, we will use the original, non-projective,
format as gold data as this relates to the most truthful analysis of the corpus.
As we pointed out in our data analysis, all punctuation is directly attached to
the root node in TiiBa-D/Z. In order to fairly compare the constituency parser
to our tagger, we reattach all punctuation to the root node before deriving the
topological field tags and clause relations.

Furthermore, we extrinsically evaluate the clause relations and field pre-
dictions on dpar® (de Kok and Hinrichs, 2016), a transition-based dependency
parser, which we extended to accept clause relations as features.

6.3 Results and Discussion

Large training set Small training set

Model Topo Clause Topo Clause
Baseline — 82.59 — —
Parser gy 97.78 97.71 96.75 96.98
Parserspaiion  97.41 97.11 96.51 96.61
Topo 98.08 — 97.81 —
Clause — 97.79 — 97.34
Joint 98.12 97.91 97.77 97.39
JOintgoldFields 98.14 99.06 97.85 98.71
Joint,opields 98.22 97.87 97.85 97.50
Joint,,,pos 97.58 97.42 — —
Joint,ow ords 97.82 97.41 — —

Table 3: Results after training on the large training set (60%) and small train-
ing set (20%). High scores in bold, those achieved without gold data are
underlined. Our joint models outperform both parsers and the non-jointly
trained counterparts. The highest accuracy for both training sets is achieved
by the Joint,oricids and Jointgeidricias models. The parser models perform
substantially worse than our models.

Shttps://github.com/danieldk/finalfrontier
Shttps://github.com/danieldk/dpar/
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Main Results. Table 3 shows the results of our main experiments. All con-
sidered models, apart from our baseline model, do well on both the clause clas-
sification and topological field prediction.

Large Training Set. On topological field tagging, the Joint models with
unrestricted inputs outperform all other models with Topo trailing by a small
margin. On clause predictions, we observe a similar pattern: the Joint mod-
els beat the competition, but do so with a larger improvement over Clause.
Joint,orields, which did not use field embeddings for the clause predictions,
achieves the highest score overall on field labeling, but loses out on clause pre-
dictions. On this task, Joint,eiqrieias reaches the highest accuracy at more than
99%, which is to be expected as it got information about the correct topological
fields for every token during the clause classification. Without the presence of
gold field tags, Joint shows the best performance on clause predictions, beating
Joint,orieids by just 0.04%.

The constituency parser trained on full trees achieves 97.78% accuracy on
assigning the correct topological field to tokens and 97.71% on modeling clause
relations. Training the parser on shallow trees rather than the full constituency
trees lowers the scores by 0.37% and 0.60% respectively.

Restricting the inputs of Joint to only POS or word embeddings hurts per-
formance on both tasks, but Joint,,words is still able to beat Parserg,;; on field
tagging. Joint,,pos gets worse scores on all of the frequent topological fields
than the counterpart without word embeddings. Thus, we cannot pinpoint a
specific field to be influenced the most by removing POS information. We con-
clude from the still decent performance on field tagging by Joint,owords that
information about the POS is crucial for this task, while the clause predictions
seem rely on word embeddings to some extent. Joint,,pos performs on par
with the model without word embeddings on clause relation modeling.

Table 4 shows the performance of some models across the 8 most frequent
topological fields (see Figure 4 for an overview). It holds for all of the investi-
gated models in this section that the left sentence bracket LK is almost always
identified correctly. Remarkably, Joint,,worqs achieves together with Joint the
highest accuracy, pointing at how important POS information is to identify
this field and that little to no semantic information, as provided through word
embeddings, is required. We observe the same pattern on the right sentence
bracket, given that POS embeddings are part of the input, all models reach
close to 100% accuracy on labeling the VC. While restricting inputs to word
embeddings only had only a slight impact on LK accuracy, the VC is affected
more strongly, lowering accuracy by close to 1% when comparing to the unre-
stricted Joint model. For all models, the MF is the largest error contributor as
this field is by far the most frequent.

Small Training Set. Using only one third of the training data lowers the
accuracy for all of the models (see Table 3). While the parser models suffer the
most from reducing the size of the training corpus, Jointgoiaricids is affected the
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Per-field accuracy

Model VF LK C MF VC NF UNK
Parserpyu 98.26 99.60  98.24 98.45 99.21 74.04 97.22
Parsersnaiion  97.70 99.46  97.72 97.89 98.80 7191  96.81
Topo 98.70 99.89 99.08 99.14 99.80 69.82  96.83
Joint 98.43 99.92 98.92 99.15 99.83 7257 96.84

Joint,opos 97.97 99.66  97.31 98.83 98.95 64.89  96.63
Jointpoworas  98.15  99.92  98.66 99.13 99.83 68.17  96.36

Frequency 49,365 21,457 9,137 169,157 26,850 6,892 72,774

Table 4: Per-field accuracy on topological field tagging and frequency for the
8 most frequent fields in the validation set. All models were trained on the
large training set. Sentence brackets LK and VC are identified with highest
accuracy, with Parserspaiion and Joint,,pos as outliers on VC accuracy. The
NF is consistently the most difficult class.

least. Training the parser models on the small set yields the only predictions
where clause relations were modeled with higher accuracy than the topological
field labels. Patterns for our Joint models remain similar to those exhibited
during training on the large set: the models receiving gold and no field tags
for clause predictions perform almost equally on topological field labeling, but,
in contrast to the results on the large training set, in the absence of gold field
labels, the model not receiving any field embeddings performs the best on clause
relations.

Accuracy with non-gold POS

Model Topo Clause
Topo 97.55 —
Clause — 97.39
Joint 97.65 97.51

Jointpowords  97.24 97.06

Table 5: Results of training our models with predicted POS on the large training
set. The accuracy of POS on the corpus is 99.06% Our model falls behind
Parser g,,;; without gold POS.

Effect of POS tagging. The evaluation in the previous sections included
feeding gold POS tags to our model. To provide a more realistic picture and to
investigate the robustness of our model with regard to errors made by a POS
tagger, we annotated our corpus using 10-fold jack-knifing (Quenouille, 1956;
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TF Accuracy by correct POS

Model Correct Incorrect
Topo 97.78 74.85
Joint 97.88 73.84

Joint,ow ords 97.49 71.12
Jointgoigpos 98.15 94.34

Joint,,,pos 97.73 81.23
Parser gy 97.91 84.17
Parsersnaiiow 96.67 79.89

Table 6: Accuracy on topological field tagging in relation to correctly predicted
POS tags. Joint,,pos and both parser models did not receive POS tags as
input while Jointgyoqpos was fed gold tags in addition to word embeddings.

Tukey, 1958) with the publicly available sticker software”. The corpus was POS-
tagged with an accuracy of 99.06%. We used the predicted POS tags both during
training and evaluation as additional experiments showed that training on gold
POS tags and evaluating on predicted tags leads to slightly worse results.

We assume that topological field labeling heavily relies on correctly identi-
fying the sentence brackets LK and VC, which in turn should depend on the
quality of the provided POS. Thus, we expect performance to drop if we feed
predicted POS tags and the error rate to be higher for tokens that were incor-
rectly POS tagged.

Table 5 confirms our assumption: replacing the gold POS tags with predicted
tags lowers the accuracy of our models on both tasks and places it behind
Parserpy-

In order to understand the losses of providing non-gold POS tags, we ex-
aminated the error rate of Joint with and without gold tags. We oberserve
increasing error rates across all topological fields, except for the very infrequent
PARORD and VCE. Among the frequent fields, the NF’s accuracy is decreased
the most: it drops by 6 points from 72% to 66%. The other fields are more sta-
ble, losing between 0.1% and 0.7%, with most of them being around the average
0.5% mark. Albeit seeing a below average increase of 0.2%, the MF still is the
largest contributor to the total increase in errors. This is to be expected as the
MF dominates by far the most tokens.

Moreover, partitioning the predictions by correct or incorrect POS shows
that the accuracy on topological field labeling drops by more than 25% if a token
was assigned an incorrect POS. We expected this effect to be more profound
with Joint,owoerds that received POS embeddings as its sole input but only
observe a decrease of 4%. Joint,,pos on the other hand was only provided
with word embeddings. This improved the accuracy on those words that got

"https://git.sr.ht/~danieldk/sticker
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Clause Prediction Errors by predicted TF
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Figure 5: Total number of clause prediction errors partitioned by whether one
of the tokens participating in the relation got assigned an incorrect topological
field.

mislabeled by the POS tagger, but hurt accuracy overall as the gains on the
small set of mistagged tokens cannot offset the losses on the large partition of
tokens with correct POS tags. Table 6 shows the full overview.

Interestingly, the error rate on topological field tagging for the partition that
got incorrect POS tags is above average for all models, even if the model was
fed gold POS tags or none at all, implying that those tokens are particularly
challenging to tag.

Relation between field tagging and clause relation accuracy. We sus-
pect that the performance topological field tagging is closely tied to the accuracy
on clause relations. As an ablation study, we trained a model where we removed
the field embeddings (Joint,omieids) and another model which was fed gold topo-
logical fields for the clause predictions (Jointgoiarierds). While the former model
showed the highest accuracy on topological field tagging, it dropped slightly be-
low Joint on clause relations. The latter model, on the other hand, showed a
massive improvement on predicting clause relations, pushing the accuracy up to
99.06%, which is by far the highest number across all models on this task. We
assume that our model heavily relies on the topological field predictions as the
vast majority of those are correct. In the few cases where the field predictions
are incorrect, the model is misguided by the provided fields.

Furthermore, we investigated the error distribution in clause classification
by partitioning the errors of each model into two groups: one where both to-
kens that are part of a clause prediction got assigned the correct fields and the
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Dependency Parsing Scores

Model LAS UAS
None 91.48 93.30
Parserpu” 91.56 93.41
Clausepred 91.69 93.50
Clausegod 91.86 93.65
Topopred 92.19 93.97
Topogoid 92.49 94.22
JOintpred 92.38 94.14
Jointgo14 92.77 94.48

Table 7: Labeled Attachment Score (LAS) and Unlabeled Attachment Score
(UAS) on our validation set. High scores in bold, those achieved without gold
data are underlined. None does not include clause relations or topological field
tags. Models with subscript gold received gold data, subscript pred indicates
taken from the predictions of the corresponding model. The Parser model de-
rived the clause relations and topological fields from post-processed constituency
trees.

other where one or both were mislabeled. Figure 5 shows that all models make
fewer mistakes if the predicted field is correct. Decoupling the field information
from the field predictions by feeding gold labels to the clause prediction module
massively lowers the number of mistakes made on the partition including mis-
labeled tokens but the errors on pairs from the other partition remain more or
less constant among the Joint models receiving any kind of field embeddings.
Joint,orields is slightly more robust with regard to incorrect topological field
labels but loses more than it gained on accuracy for correctly labeled pairs.
The parser model’s error distribution is more evenly divided, not because it was
more robust on clause predictions but rather because it could not benefit from
the correctly identified topological field labels.

Dependency Parsing. Table 7 shows that enriching the topological field tags
with clause relations yields a sizable improvement on dependency parsing. The
baseline model, denoted as None in the table, does not receive any information
about the topological field structure of the sentence and achieves the lowest
scores. Providing the parser with predictions of Clause already yields a slight
improvement of roughly 0.4% on unlabeled attachment score (UAS) and 0.25%
on labeled attachment score (LAS). Passing the output of Topo to the parser
ends up with a larger gain of about 0.7% on both scores. The best result without
feeding gold data comes from incorporating our Joint’s predictions, adding 0.9%
to LAS and 0.84% to UAS. Replacing the predictions with the gold data for each
model pushes the scores even further, reaching 92.77% LAS and 94.48% UAS.
The predictions provided by Parserg,; prove to be the least helpful for the
task.
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UAS A by Distance
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Figure 6: UAS A between None and Clausegoiq, Topogora and Jointgeq. Clause
information alone yields only slight improvements. For all three models, the
improvements grow over distance.

Although we cannot directly compare our results to de Kok and Hinrichs
(2016) because we used a newer release of TtiBa-D/Z and larger training sets,
we observe similar, but more profound, improvements when we plot the differ-
ence in UAS against the linear distance between the head and dependent in
each dependency relation (see Figure 6). Adding clause information alone can
actually negatively impact UAS at mid-range distances, but is mostly helpful.
Enriching the topological fields with clause relations has the biggest impact at
higher distances.

Figure 7 shows two plots, the first displays the changes in LAS across the
different dependency labels while the second shows absolute changes in errors
per category. The highest improvement in LAS for all models is found for par-
enthetical constructions (PAR), among the frequent labels, adverbial modifiers
(ADV), root attachment (ROOT) and some conjunctions (KON) see the largest
gains. In absolute numbers, the highest decrease compared to the baseline model
None comes from the previously mentioned frequent labels ADV, SUBJ, ROOT
and KON.

Unlike de Kok and Hinrichs (2016), we see a marked improvement on the
prepositional object (OBJP) label. This relation seems to be one of the few that
benefit more from clause relations than from topological field information.
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Figure 7: First plot displays LAS A between None and Clausegoid, Topogoid
and Jointgeq. The second plot displays absolute error A to the baseline None.
Labels are sorted by frequency in both plots, with the most frequent on the left.
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7 Conclusion

In this work, we introduced a new scheme to locally model clause information.
Instead of building an abstract tree structure to globally encode the clause
structure of a sentence, we define binary relations between tokens, making the
information available at the token-level.

We have shown that it is possible to determine whether two tokens are lo-
cated in the same clause without having to predict a full constituency tree.
Our model beats a state-of-the-art constituency parser in predicting such bi-
nary relations and even has the advantage of doing so without the overhead of
predicting a complex tree structure.

In the model that jointly predicts topological fields and clause relations,
we append topological field embeddings based on the predictions of the same
model. Here it would be interesting to maintain a continuous representation of
the fields, by, for instance, feeding the probability distribution over the fields to
the clause module.

As demonstrated by our extrinsic evaluation, a transition-based dependency
parser benefits from knowledge about clause relations. Since such a dependency
parser has to decide whether to introduce a dependency relation between token
pairs or not, it merely needs predictions for the clause relations of the tokens
potentially participating in a dependency relation. Our models can provide this
on demand, while a constituency parser will always model all relations at once
as it requires a full parse to do so. In the future, we want to investigate whether
a dependency parser can achieve even better results by providing it with the
probability of two tokens belonging to the same clause rather than giving the
parser a binary class label.

Preliminary results show that it is possible to predict clause relations jointly
with POS tagging, too. This would open opportunities to apply our clause
modeling scheme to many other languages that do not have a topological field
structure. Moreover, our scheme is not restricted to predicting clause relations,
for instance, it could also be applied to determine whether tokens belong to the
same phrase or form a multiword unit. Some rule-based parsers, such as the
Alpino parser (Van der Beek et al., 2002), can take bracketed input to narrow
down the search space. Typically, chunkers were used for such a task, but our
scheme has the benefit that it can model discontinuous phrases.

Given a sentence with fully annotated clause relations for every token, we
also want to investigate how well the clause boundaries can be inferred.

Further, we want to explore what effect replacing the RNNs in our model
with a self-attentive encoder architecture (Vaswani et al., 2017) or a dilated
convolutional neural network (Bai et al., 2018) has.

Recently, contextualized word representations (Peters et al., 2018; Devlin
et al., 2018) led to large improvements on a variety of tasks. We expect the use
of these models to be beneficial for our tasks, too, and want to investigate how
they affect topological field labeling and clause relation predictions.
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A
A.l

A.2

Hyperparameters

Word embeddings

Context Scheme Dependencies
Dimensions 300

Minimum Token Count 30
Minimum Context Count 5
Negative Sampling Factor 5
Epochs 5

NGram Range 3-6

Dependency Depth 1

Topo and Clause models

Batchsize 50
Learning Rate

— Initial LR 0.005
— Patience 15

— Adjustment Half LR after 5 epochs without improvement on devel-
opment set.

Solver Adam (Kingma and Ba, 2014)

Input Dropout 0.8

LSTM Dropout 0.85

LSTM Output Dimensions 100

ReLU Layer Dimensions 100

Topological Field Embedding Dimensions 25
Distance Embedding Dimensions 10

Distance Maximum Value 25
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