Insights into Subword Embeddings

Sebastian Pütz

SFB833 A3 University of Tübingen

December 11, 2019

▲ 伊 ▶ ▲ 王 ▶

A different take on composition

• How to compose words?

A different take on composition

- How to compose words?
- What to compose into words!

Outline

Background

- Word embeddings
- Embeddings with subwords
- 2 Hashing trick
- Section 2 Explicit ngram lookup
- Introspection & Evaluation
- 6 Conclusion & Outlook

Background

Background

4/51

Sebastian Pütz Insights into Subword Embeddings

문 문 문

Word embeddings

- Word representations in low-dimensional vector space.
- Trained unsupervisedly by predicting word-context co-occurrence.
 - CBOW given *n* context words, predict probability of the focus word
 - skipgram given a focus word, predict probability of context words

Skipgram with negative sampling

They_c made_c **some** tasty_c food_c

• • = • • = •

Skipgram with negative sampling

They_c made_c **some** tasty_c food_c

- Each context word_c is a positive example for some
 - \rightarrow For each word_c, query the model for $p(positive | some, word_c)$
 - \rightarrow Update *word*_c and **some** to increase probability.

Skipgram with negative sampling

They_c made_c **some** tasty_c food_c

- Each context word_c is a positive example for some
 - \rightarrow For each word_c, query the model for $p(positive | some, word_c)$
 - \rightarrow Update *word*_c and **some** to increase probability.
- For each positive, draw *n* random, negative samples
 - \rightarrow Query for $p(positive | some, random_c)$
 - \rightarrow Update embeddings to decrease probability.

Skipgram with negative sampling

They_c made_c **some** tasty_c food_c

- Each context word_c is a positive example for some
 - \rightarrow For each word_c, query the model for $p(positive | some, word_c)$
 - \rightarrow Update *word*_c and **some** to increase probability.
- For each positive, draw *n* random, negative samples
 - \rightarrow Query for $p(positive | some, random_c)$
 - \rightarrow Update embeddings to decrease probability.
- word and word_c are distinct vectors.

Structured Skipgram Ling et al. (2015)

Structured Skipgram

$They_{c-1}$	made	$some_{c+1}$	$tasty_{c+2}$	$food_{c+3}$
$They_{c-2}$	$made_{c-1}$	some	$tasty_{c+1}$	$food_{c+2}$

- Context words are typed by their offset wrt. the focus word.
- Vectors of context words at different offsets are distinct.
 - $\rightarrow \ \mathsf{They}_{c-1} \mathrel{!=} \mathsf{They}_{c-2}$
 - $\rightarrow\,$ more focused contexts, sparser updates
- Typically perform better on syntactic tasks

Embeddings with subword information Bojanowski et al. (2017) - fastText

Embeddings with subword information

 $\begin{array}{c} <\!\!\mathrm{so}_f + \\ \mathrm{som}_f + \\ \mathrm{ome}_f + \\ \mathrm{me}_f + \\ \mathrm{He}_c \quad \mathrm{made}_c \quad \mathbf{some}_f \quad \mathrm{tasty}_c \quad \mathrm{food}_c \end{array}$

- Ngrams also have embeddings.
- Words are represented by the average of their ngrams
 - \rightarrow Ngram embeddings are shared across words.
 - $\rightarrow~$ Orthographically similar words get similar representation.
- Known words get an additional, distinct vector

Structured skipgram with subword information https://github.com/finalfusion/finalfrontier

Structured skipgram with subword information

$$<$$
so +
som +
ome +
me> +
He_{c-2} made_{c-1} **some** tasty_{c+1} food_{c+2}

Combine structured skipgram with subword information
 → Better embeddings for syntactic tasks and broader coverage.

How are ngrams extracted?

How are ngrams extracted?

- Set a minimum and maximum length
 - $\rightarrow\,$ typically 3 and 6
- Bracket words with '<' and '>'
 - $\rightarrow\,$ with minimum length 3, all words will generate ngrams

How are ngrams extracted?

Word	Ngrams	#
а	<a>	1
is	$\langle is + is \rangle + \langle is \rangle$	3
and	<an + and + nd> + $<$ and + and>+ $<$ and>	6
some	<so +="" me="" ome="" som=""> + <some +="" ome="" some=""> + <some></some></some></so>	8

 $\rightarrow\,$ Examples of extracted ngrams in range 3-6

A ≥ ▶

How are ngrams extracted?

- At length 4, each additional character adds 4 new ngrams.
 - \rightarrow Universitätsstadt yields 62 distinct ngrams.
 - \rightarrow *Eberhard-Karls-Universität* generates 98 distinct ngrams.

Isn't that a lot of ngrams?

Given a large corpus, how to accomodate all the in-vocabulary ngrams?

Hashing trick

The hashing trick

æ

fastText uses the *hashing trick* to bound memory requirements.

fastText uses the *hashing trick* to bound memory requirements.

Ingredients:

- Desired number of ngram embeddings
- A fast hashing function: FNV-1a

fastText uses the *hashing trick* to bound memory requirements.

Ingredients:

- Desired number of ngram embeddings
- A fast hashing function: FNV-1a

Recipe:

- Calculate hash for an ngram.
- Map hash to the ngram embedding space

Hashing trick

Consequences:

- Ngrams don't need to be explicitly stored
- Number of ngram embeddings is independent of the corpus.

Hashing trick

Consequences:

- Ngrams don't need to be explicitly stored
- Number of ngram embeddings is independent of the corpus.
- But! the number of ngrams is not independent of corpus size.
 - \rightarrow Where do the additional ngrams go?

Who is actually tricked?

Who is actually tricked?

Hashing collisions

Collisions

- FNV-1a is not a perfect hashing function.
 - $\rightarrow\,$ Hashing collisions happen at random.
 - $\rightarrow\,$ Random words share parameters.

Hashing collisions

Collisions

- FNV-1a is not a perfect hashing function.
 - \rightarrow Hashing collisions happen at random.
 - $\rightarrow\,$ Random words share parameters.

Examples

Hausfriedens bruchs	Friede nsoppo sition
Jawohl	Pro fessor
Recrui ting-A bteilung	P ickel hauben-Kompanie

 $\rightarrow\,$ Taken from TüBa-D/Z with 2^{21} buckets.

Unknown ngrams

- FNV-1a has an answer for every piece of data
 - $\rightarrow\,$ Out-of-vocabulary ngrams get mapped to random buckets.

Unknown ngrams

- FNV-1a has an answer for every piece of data
 - $\rightarrow\,$ Out-of-vocabulary ngrams get mapped to random buckets.

Known	Unknown	
Tsunami	Multim ediav orführungen	
B irthd ay	Holzpult	
N otst and	Voka lakrob at	

 \rightarrow Taken from TüBa-D/Z with 2²¹ buckets.

The hashing trick in real-life

Data:

- Non-webcrawled part of TüBa-D/DP corpus (de Kok and Pütz, 2019)
 - \rightarrow **TWE**: **T**AZ¹ + **W**ikipedia² + **E**uroparl
 - ightarrow 1.3 billion tokens, 12.9 million types
 - ightarrow 19.7 million distinct ngrams
- Only ngrams of in-vocabulary tokens are considered

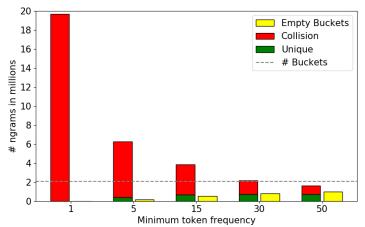
Parameters:

- 2^{21} buckets ≈ 2.1 million ngram embeddings
 - $\rightarrow\,$ closest power of 2 to the default fastText number

¹20 years of newspaper text ²January '19 dump

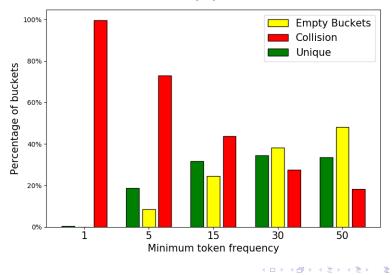
Ngram distribution

Distribution of ngrams



Bucket population

Bucket population



Sebastian Pütz Insights into Subword Embeddings

The hashing trick in words

• For minimum frequency 30:

- $\rightarrow\,$ less than 60000 buckets are missing
- $\rightarrow~38\%$ are wasted
- $\rightarrow~27\%$ hold multiple, random ngrams
- $\rightarrow~35\%$ cleanly map to a single ngram

The hashing trick in words

- For minimum frequency 30:
 - ightarrow less than 60000 buckets are missing
 - ightarrow 38% are wasted
 - $ightarrow \,$ 27% hold multiple, random ngrams
 - $ightarrow \,$ 35% cleanly map to a single ngram
- TWE has 19.7 million distinct ngrams
 - $\rightarrow\,$ Processing the corpus means retrieving an embedding for every ngram
 - $\rightarrow\,$ With 2^{21} available buckets, that means more than ${\bf 9}$ ngrams per embedding

• Is the FNV-1a algorithm just bad at hashing?

э

- Is the FNV-1a algorithm just bad at hashing? No!
 - $ightarrow \left(rac{\mathbf{b}-\mathbf{1}}{\mathbf{b}}
 ight)^{\mathbf{n}}$ given b buckets and n items is the probability of an empty bucket
 - $\rightarrow\,$ empirical 38% vs. expected 36%

How does that even work?

• How does that even work?

伺 ト イヨト イヨト

э

How does that even work?

• How does that even work?

- $\rightarrow\,$ Random initialization is near-zero
- $\rightarrow\,$ model has a lot of redundancy.

Do we need the hashing trick?

Do we need the hashing trick to bound memory?

Do we need the hashing trick?

Do we need the hashing trick to bound memory?

- On TWE with mininum frequency 30
 - $\rightarrow\,$ No, the number of ngram embeddings grows by only 2.7%.

Do we need the hashing trick?

Do we need the hashing trick to bound memory?

- On TWE with mininum frequency 30
 - ightarrow No, the number of ngram embeddings grows by only 2.7%.
- For larger vocabularies
 - $\rightarrow\,$ Filter ngrams by frequency.
 - $\rightarrow\,$ Set vocabulary size instead of number of buckets.

Two approaches to explicit storage:

- After training, build an index with actually trained ngrams.
 - $\rightarrow~$ Possibly downsizes the model.
 - \rightarrow No more lies about unknown ngrams.
 - \rightarrow In-vocab collisions remain.

Two approaches to explicit storage:

- After training, build an index with actually trained ngrams.
 - $\rightarrow~$ Possibly downsizes the model.
 - \rightarrow No more lies about unknown ngrams.
 - \rightarrow In-vocab collisions remain.
- Irain embeddings with a proper hash-table.
 - ightarrow No wasted space, no trade-off between collisions and space.
 - \rightarrow No lies about unknown ngrams.
 - \rightarrow No collisions.

Comparison: Explicit storage vs. Hashing trick

Hyperparamters		
Corpus	TWE	
Dimensions	300	
Context Window	10	
Negative Samples	5	
Ngram Range	3-6	

All embeddings were trained with finalfrontier³, using structured skipgram.

³https://github.com/finalfusion/finalfrontier () +

Quick stats

Model	# Embeddings	Size
Buckets 2 ²¹	3.28 <i>m</i>	3.7 <i>GB</i>
Converted 2 ²¹	2.76 <i>m</i>	3.2 <i>GB</i>
Explicit	4.39 <i>m</i>	5.5 <i>GB</i>
Mincount 15		

・ロト ・四ト ・ヨト ・ヨト

Quick stats

Model	# Embeddings	Size
Buckets 2 ²¹	3.28 <i>m</i>	3.7 <i>GB</i>
Converted 2 ²¹	2.76 <i>m</i>	3.2 <i>GB</i>
Explicit	4.39 <i>m</i>	5.5 <i>GB</i>
Mincount 15		
Buckets 2 ²⁰	1.76 <i>m</i>	2.0 <i>GB</i>
Converted 2 ²⁰	1.59 <i>m</i>	1.9GB
Buckets 2 ²¹	2.81 <i>m</i>	3.2 <i>GB</i>
Converted 2 ²¹	2.01 <i>m</i>	2.3 <i>GB</i>
Explicit	2.87 <i>m</i>	3.3 <i>GB</i>
Mincount 30		

Introspection

Introspection

30 / 51

æ

э

- How much of the word representation is encoded in ngrams?
- O explicit ngram lookups make a difference?

• Known words: average of ngrams and a distinct word vector

 $\rightarrow~$ leave out distinct word vector

- Known words: average of ngrams and a distinct word vector $\rightarrow\,$ leave out distinct word vector
- Compare known and OOV representation.
- Analyse similarity of known representation with most similar ngram.

Model	OOV Sim	
Buckets 2 ²¹	0.991	
Explicit	0.993	
Mincount 15		

Model	OOV Sim	
Buckets 2 ²¹	0.991	
Explicit	0.993	
Mincount 15		
Buckets 2 ²⁰	0.983	
Buckets 2 ²¹	0.986	
Explicit	0.988	
Mincount 30		

< ロ > < 回 > < 回 > < 回 > < 回 >

- Virtually all information of known words is represented by ngram embeddings.
 - → Speed-space trade-off by discarding distinct word vectors possible. (mincount 15: -1.1m, mincount 30: -0.7m)
- Slightly more similarity with less collisions.
 - $\rightarrow\,$ Lower mincount has more collisions, but other interactions are at play.

-

Introspection

Model	Top Sim	
Buckets 2 ²¹	0.516	
Explicit	0.563	
Mincount 15		

< ロ > < 回 > < 回 > < 回 > < 回 >

Model	Top Sim
Buckets 2 ²¹	0.516
Explicit	0.563
Mincou	nt 15
Buckets 2 ²⁰	0.494
Buckets 2 ²¹	0.532
Explicit	0.585
Mincount 30	

 $\rightarrow\,$ Models rely more on single ngrams with clean lookups.

æ

・ 同 ト ・ ヨ ト ・ ヨ ト …

Extrinsic Evaluation

Extrinsic Evaluation

Evaluation

• Tasks

- $\rightarrow~$ Part-of-speech Tagging
- \rightarrow Dependency Parsing

• Data

- \rightarrow TüBa-D/Z r11 (Telljohann et al., 2004)
- $\rightarrow\,$ Random splits: 70% Train, 10% Dev, 20% Val

All models were trained and evaluated with sticker⁴.

Part-of-speech Tagging Setup

- Tags: Concatenation of STTS and UD tags.
 - $\rightarrow~$ Possible to retrieve either tagset by splitting.
 - $\rightarrow\,$ Beneficial for dependency parsing as sequence tagging.

Part-of-speech Tagging Setup

- Tags: Concatenation of STTS and UD tags.
 - \rightarrow Possible to retrieve either tagset by splitting.
 - \rightarrow Beneficial for dependency parsing as sequence tagging.
- **Model:** 3 stacked Bidirectional LSTMs with 400 hidden units and Residual Connections
- LR: 2000 linear warmup steps, followed by plateau scheduler
 → Stop after 15 epochs without improvement.

Part-of-speech Tagging Results

Model	Accuracy
Buckets 2 ²¹	99.19
Converted 2 ²¹	99.21
Explicit	99.21
Minimum C	ount 15

æ

(4) 문 (4) R (4) R

Part-of-speech Tagging Results

Model	Accuracy	
Buckets 2 ²¹	99.19	
Converted 2 ²¹	99.21	
Explicit	99.21	
Minimum Co	ount 15	
Buckets 2 ²¹	99.18	
Converted 2 ²¹	99.19	
Buckets 2 ²⁰	99.17	
Converted 2 ²⁰	99.18	
Explicit 30	99.19	
Explicit 50	99.19	
Explicit 125	99.21	
Minimum Co	ount 30	

æ

▲御▶ ▲臣▶ ▲臣▶ -

Part-of-speech Tagging Results

Discussion:

- Slight advantages for explicit and converted models.
- Much smaller models achieve virtually the same score. \rightarrow Converted 2²⁰ is only 60% of the size of Buckets 2²¹
- Training with bucket embeddings and evaluating with converted embeddings hurts performance.

Dependency Parsing Setup

- Tags: Relative part-of-speech encoding
 - $\rightarrow\,$ Part-of-speeches provided through 10-fold jackknifing.
 - $\rightarrow~$ UD version of TüBa-D/Z (Çöltekin et al., 2017)

Dependency Parsing Setup

- Tags: Relative part-of-speech encoding
 - ightarrow Part-of-speeches provided through 10-fold jackknifing.
 - \rightarrow UD version of TüBa-D/Z (Çöltekin et al., 2017)
- **Model:** 3 stacked Bidirectional LSTMs with 600 hidden units and Residual Connections, input includes POS embeddings.
- LR: 2000 linear warmup steps, followed by plateau scheduler
 → Stop after 15 epochs without improvement.

Dependency Parsing Setup

- Tags: Relative part-of-speech encoding
 - ightarrow Part-of-speeches provided through 10-fold jackknifing.
 - \rightarrow UD version of TüBa-D/Z (Çöltekin et al., 2017)
- **Model:** 3 stacked Bidirectional LSTMs with 600 hidden units and Residual Connections, input includes POS embeddings.
- LR: 2000 linear warmup steps, followed by plateau scheduler \rightarrow Stop after 15 epochs without improvement.
- **Evaluation:** Punctuation is discarded.

Dependency Parsing Results

Model	LAS	UAS
Buckets 2 ²¹	93.50	94.89
Converted 2 ²¹	93.55	94.91
Explicit	93.48	94.86
Minimum Count 15		

▲御▶ ▲ 臣▶ ▲ 臣▶

Dependency Parsing Results

Model	LAS	UAS
Buckets 2 ²¹	93.50	94.89
Converted 2 ²¹	93.55	94.91
Explicit	93.48	94.86
Minimum Count 15		
Buckets 2 ²¹	93.42	94.84
Converted 2 ²¹	93.56	94.93
Buckets 2 ²⁰	93.52	94.92
Converted 2 ²⁰	93.54	94.91
Explicit 30	93.48	94.86
Explicit 50	93.56	94.88
Explicit 125	93.51	94.89
Minimum Count 30		

æ

・四ト・モート・モート

Dependency Parsing Results

Discussion:

- Converted models beat the corresponding Bucket models.
- $\bullet~2^{20}$ buckets performs unexpectedly well: +0.1 LAS vs. 2^{21}
- Explicit lookups don't seem to offer improvements.
- No change in accuracy when using converted models to predict.

Conclusion:

- Subword embeddings hold almost the full information.
 - ightarrow Speed-space tradeoff by discarding word vectors.
- Only small effect on downstream models.
 - $\rightarrow\,$ Large capacity of the considered models might lower impact of embeddings.
 - $\rightarrow\,$ More collisions do not hurt performance on the given tasks.
- Converting bucket to explicit models is beneficial.
 - \rightarrow Downsizes the model while improving performance.

Outlook:

- Evaluate how explicit lookups interact with pretraining.
- Fine-tune downsized embeddings on downstream tasks.

Thank you for your attention!

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. *Transactions of the Association of Computational Linguistics* 5(1):135–146.

Çağrı Çöltekin, Ben Campbell, Erhard Hinrichs, and Heike Telljohann. 2017. Converting the tüba-d/z treebank of german to universal dependencies. In *Proceedings of the NoDaLiDa* 2017 Workshop on Universal Dependencies (UDW 2017). pages 27–37.

Daniël de Kok and Sebastian Pütz. 2019. Tüba-d/dp stylebook.

References II

Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso. 2015. Two/too simple adaptations of word2vec for syntax problems. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics.

- Tomas Mikolov, Kai Chen, and Greg Corrado. 2013. Efficient estimation of word representations in vector space .
- Michalina Strzyz, David Vilares, and Carlos Gómez-Rodríguez. 2019. Viable dependency parsing as sequence labeling. *arXiv* preprint arXiv:1902.10505.

References III

Heike Telljohann, Erhard Hinrichs, Sandra Kübler, and Ra Kübler. 2004. The tüba-d/z treebank: Annotating german with a context-free backbone. In *In Proceedings of the Fourth International Conference on Language Resources and Evaluation* (*LREC 2004*. Citeseer.

Part-of-speech Tagging Results

Model	Accuracy
Buckets 15/21	99.19
Explicit 15/15	99.21
Converted $15/21$	99.21
Buckets 30/21	99.18
Converted 30/21	99.19
Buckets 30/20	99.17
Converted 30/20	99.18
Explicit 30/30	99.19
Expl 30/50	99.19
Expl 30/100	99.14
Expl 30/125	99.21

æ

< /₽ > < E >

Dependency Parsing Results

Model	LAS	UAS
Buckets 2 ²¹	93.50	94.89
Converted 2 ²¹	93.55	94.91
Explicit	93.48	94.86
Minimum (Count 15	

æ

< 同 ト < 三 ト < 三 ト

Dependency Parsing Results

Model	LAS	UAS
Buckets 2 ²¹	93.50	94.89
Converted 2 ²¹	93.55	94.91
Explicit	93.48	94.86
Minimum Count 15		
Buckets 2 ²¹	93.42	94.84
Converted 2 ²¹	93.56	94 . 93
Buckets 2 ²⁰	93.52	94.92
Converted 2 ²⁰	93.54	94.91
Explicit	93.48	94.86
Minimum	Count 30	
Explicit 30/50	93.56	94.88
Explicit 30/100	93.52	94.90
Explicit 30/125	93.51	94.89

э

문▶ ★ 문▶