
References

Insights into Subword Embeddings

Sebastian Pütz

SFB833 A3
University of Tübingen

December 11, 2019

1 / 51 Sebastian Pütz Insights into Subword Embeddings

References

A different take on composition

How to compose words?

What to compose into words!

2 / 51 Sebastian Pütz Insights into Subword Embeddings

References

A different take on composition

How to compose words?

What to compose into words!

2 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Outline

1 Background

- Word embeddings
- Embeddings with subwords

2 Hashing trick

3 Explicit ngram lookup

4 Introspection & Evaluation

5 Conclusion & Outlook

3 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Background

Background

4 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Word embeddings

Word representations in low-dimensional vector space.

Trained unsupervisedly by predicting word-context
co-occurrence.

1 CBOW - given n context words, predict probability of the
focus word

2 skipgram - given a focus word, predict probability of context
words

5 / 51 Sebastian Pütz Insights into Subword Embeddings

References

The skipgram algorithm
Mikolov et al. (2013) - word2vec

Skipgram with negative sampling

Theyc madec some tastyc foodc

Each context wordc is a positive example for some
→ For each wordc , query the model for p(positive|some,wordc)
→ Update wordc and some to increase probability.

For each positive, draw n random, negative samples

→ Query for p(positive|some, randomc)
→ Update embeddings to decrease probability.

word and wordc are distinct vectors.

6 / 51 Sebastian Pütz Insights into Subword Embeddings

References

The skipgram algorithm
Mikolov et al. (2013) - word2vec

Skipgram with negative sampling

Theyc madec some tastyc foodc

Each context wordc is a positive example for some
→ For each wordc , query the model for p(positive|some,wordc)
→ Update wordc and some to increase probability.

For each positive, draw n random, negative samples

→ Query for p(positive|some, randomc)
→ Update embeddings to decrease probability.

word and wordc are distinct vectors.

6 / 51 Sebastian Pütz Insights into Subword Embeddings

References

The skipgram algorithm
Mikolov et al. (2013) - word2vec

Skipgram with negative sampling

Theyc madec some tastyc foodc

Each context wordc is a positive example for some
→ For each wordc , query the model for p(positive|some,wordc)
→ Update wordc and some to increase probability.

For each positive, draw n random, negative samples

→ Query for p(positive|some, randomc)
→ Update embeddings to decrease probability.

word and wordc are distinct vectors.

6 / 51 Sebastian Pütz Insights into Subword Embeddings

References

The skipgram algorithm
Mikolov et al. (2013) - word2vec

Skipgram with negative sampling

Theyc madec some tastyc foodc

Each context wordc is a positive example for some
→ For each wordc , query the model for p(positive|some,wordc)
→ Update wordc and some to increase probability.

For each positive, draw n random, negative samples

→ Query for p(positive|some, randomc)
→ Update embeddings to decrease probability.

word and wordc are distinct vectors.

6 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Structured Skipgram
Ling et al. (2015)

Structured Skipgram

Theyc−1 made somec+1 tastyc+2 foodc+3

Theyc−2 madec−1 some tastyc+1 foodc+2

Context words are typed by their offset wrt. the focus word.

Vectors of context words at different offsets are distinct.

→ Theyc−1 != Theyc−2

→ more focused contexts, sparser updates

Typically perform better on syntactic tasks

7 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Embeddings with subword information
Bojanowski et al. (2017) - fastText

Embeddings with subword information

<sof +
somf +
omef +

me>f +
Hec madec somef tastyc foodc

Ngrams also have embeddings.

Words are represented by the average of their ngrams

→ Ngram embeddings are shared across words.
→ Orthographically similar words get similar representation.

Known words get an additional, distinct vector

8 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Structured skipgram with subword information
https://github.com/finalfusion/finalfrontier

Structured skipgram with subword information

<so +
som +
ome +

me> +
Hec−2 madec−1 some tastyc+1 foodc+2

Combine structured skipgram with subword information

→ Better embeddings for syntactic tasks and broader coverage.

9 / 51 Sebastian Pütz Insights into Subword Embeddings

References

How are ngrams extracted?

How are ngrams extracted?

Set a minimum and maximum length

→ typically 3 and 6

Bracket words with ’<’ and ’>’

→ with minimum length 3, all words will generate ngrams

10 / 51 Sebastian Pütz Insights into Subword Embeddings

References

How are ngrams extracted?

Word Ngrams #

a <a> 1

is <is + is>+ <is> 3

and <an + and + nd> 6
+ <and + and>+ <and>

some <so + som + ome + me> 8
+ <some + some + ome>
+ <some>

→ Examples of extracted ngrams in range 3-6

11 / 51 Sebastian Pütz Insights into Subword Embeddings

References

How are ngrams extracted?

At length 4, each additional character adds 4 new ngrams.

→ Universitätsstadt yields 62 distinct ngrams.
→ Eberhard-Karls-Universität generates 98 distinct ngrams.

12 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Isn’t that a lot of ngrams?

Given a large corpus, how to accomodate all the
in-vocabulary ngrams?

13 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Hashing trick

The hashing trick

14 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Hashing trick

fastText uses the hashing trick to bound memory requirements.

Ingredients:

Desired number of ngram embeddings

A fast hashing function: FNV-1a

Recipe:

Calculate hash for an ngram.

Map hash to the ngram embedding space

15 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Hashing trick

fastText uses the hashing trick to bound memory requirements.

Ingredients:

Desired number of ngram embeddings

A fast hashing function: FNV-1a

Recipe:

Calculate hash for an ngram.

Map hash to the ngram embedding space

15 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Hashing trick

fastText uses the hashing trick to bound memory requirements.

Ingredients:

Desired number of ngram embeddings

A fast hashing function: FNV-1a

Recipe:

Calculate hash for an ngram.

Map hash to the ngram embedding space

15 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Hashing trick

Consequences:

Ngrams don’t need to be explicitly stored

Number of ngram embeddings is independent of the corpus.

But! the number of ngrams is not independent of corpus size.

→ Where do the additional ngrams go?

16 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Hashing trick

Consequences:

Ngrams don’t need to be explicitly stored

Number of ngram embeddings is independent of the corpus.

But! the number of ngrams is not independent of corpus size.

→ Where do the additional ngrams go?

16 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Who is actually tricked?

Who is actually tricked?

17 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Hashing collisions

Collisions

FNV-1a is not a perfect hashing function.

→ Hashing collisions happen at random.
→ Random words share parameters.

Examples

Hausfriedensbruchs Friedensopposition
Jawohl Professor
Recruiting-Abteilung Pickelhauben-Kompanie

→ Taken from TüBa-D/Z with 221 buckets.

18 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Hashing collisions

Collisions

FNV-1a is not a perfect hashing function.

→ Hashing collisions happen at random.
→ Random words share parameters.

Examples

Hausfriedensbruchs Friedensopposition
Jawohl Professor
Recruiting-Abteilung Pickelhauben-Kompanie

→ Taken from TüBa-D/Z with 221 buckets.

18 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Unknown ngrams

Unknown ngrams

FNV-1a has an answer for every piece of data

→ Out-of-vocabulary ngrams get mapped to random buckets.

Known Unknown

Tsunami Multimediavorführungen
Birthday Holzpult
Notstand Vokalakrobat

→ Taken from TüBa-D/Z with 221 buckets.

19 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Unknown ngrams

Unknown ngrams

FNV-1a has an answer for every piece of data

→ Out-of-vocabulary ngrams get mapped to random buckets.

Known Unknown

Tsunami Multimediavorführungen
Birthday Holzpult
Notstand Vokalakrobat

→ Taken from TüBa-D/Z with 221 buckets.

19 / 51 Sebastian Pütz Insights into Subword Embeddings

References

The hashing trick in real-life

Data:

Non-webcrawled part of TüBa-D/DP corpus (de Kok and
Pütz, 2019)

→ TWE: TAZ1 + Wikipedia2 + Europarl
→ 1.3 billion tokens, 12.9 million types
→ 19.7 million distinct ngrams

Only ngrams of in-vocabulary tokens are considered

Parameters:

221 buckets ≈ 2.1 million ngram embeddings

→ closest power of 2 to the default fastText number

120 years of newspaper text
2January ’19 dump

20 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Ngram distribution

Distribution of ngrams

21 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Bucket population

Bucket population

22 / 51 Sebastian Pütz Insights into Subword Embeddings

References

The hashing trick in words

For minimum frequency 30:

→ less than 60000 buckets are missing
→ 38% are wasted
→ 27% hold multiple, random ngrams
→ 35% cleanly map to a single ngram

TWE has 19.7 million distinct ngrams

→ Processing the corpus means retrieving an embedding for every
ngram

→ With 221 available buckets, that means more than 9 ngrams
per embedding

23 / 51 Sebastian Pütz Insights into Subword Embeddings

References

The hashing trick in words

For minimum frequency 30:

→ less than 60000 buckets are missing
→ 38% are wasted
→ 27% hold multiple, random ngrams
→ 35% cleanly map to a single ngram

TWE has 19.7 million distinct ngrams

→ Processing the corpus means retrieving an embedding for every
ngram

→ With 221 available buckets, that means more than 9 ngrams
per embedding

23 / 51 Sebastian Pütz Insights into Subword Embeddings

References

FNV-1a?

Is the FNV-1a algorithm just bad at hashing?

No!

→ (b−1
b

)n given b buckets and n items is the probability of an
empty bucket

→ empirical 38% vs. expected 36%

24 / 51 Sebastian Pütz Insights into Subword Embeddings

References

FNV-1a?

Is the FNV-1a algorithm just bad at hashing? No!

→ (b−1
b

)n given b buckets and n items is the probability of an
empty bucket

→ empirical 38% vs. expected 36%

24 / 51 Sebastian Pütz Insights into Subword Embeddings

References

How does that even work?

How does that even work?

→ Random initialization is near-zero

→ model has a lot of redundancy.

25 / 51 Sebastian Pütz Insights into Subword Embeddings

References

How does that even work?

How does that even work?
→ Random initialization is near-zero

→ model has a lot of redundancy.

25 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Do we need the hashing trick?

Do we need the hashing trick to bound memory?

On TWE with mininum frequency 30

→ No, the number of ngram embeddings grows by only 2.7%.

For larger vocabularies

→ Filter ngrams by frequency.
→ Set vocabulary size instead of number of buckets.

26 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Do we need the hashing trick?

Do we need the hashing trick to bound memory?

On TWE with mininum frequency 30

→ No, the number of ngram embeddings grows by only 2.7%.

For larger vocabularies

→ Filter ngrams by frequency.
→ Set vocabulary size instead of number of buckets.

26 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Do we need the hashing trick?

Do we need the hashing trick to bound memory?

On TWE with mininum frequency 30

→ No, the number of ngram embeddings grows by only 2.7%.

For larger vocabularies

→ Filter ngrams by frequency.
→ Set vocabulary size instead of number of buckets.

26 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Two approaches

Two approaches to explicit storage:

1 After training, build an index with actually trained ngrams.

→ Possibly downsizes the model.
→ No more lies about unknown ngrams.
→ In-vocab collisions remain.

2 Train embeddings with a proper hash-table.

→ No wasted space, no trade-off between collisions and space.
→ No lies about unknown ngrams.
→ No collisions.

27 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Two approaches

Two approaches to explicit storage:

1 After training, build an index with actually trained ngrams.

→ Possibly downsizes the model.
→ No more lies about unknown ngrams.
→ In-vocab collisions remain.

2 Train embeddings with a proper hash-table.

→ No wasted space, no trade-off between collisions and space.
→ No lies about unknown ngrams.
→ No collisions.

27 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Comparison: Explicit storage vs. Hashing trick

Hyperparamters

Corpus TWE
Dimensions 300
Context Window 10
Negative Samples 5
Ngram Range 3-6

All embeddings were trained with finalfrontier3, using structured
skipgram.

3https://github.com/finalfusion/finalfrontier

28 / 51 Sebastian Pütz Insights into Subword Embeddings

https://github.com/finalfusion/finalfrontier

References

Quick stats

Model # Embeddings Size

Buckets 221 3.28m 3.7GB
Converted 221 2.76m 3.2GB
Explicit 4.39m 5.5GB

Mincount 15

Buckets 220 1.76m 2.0GB
Converted 220 1.59m 1.9GB
Buckets 221 2.81m 3.2GB
Converted 221 2.01m 2.3GB
Explicit 2.87m 3.3GB

Mincount 30

29 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Quick stats

Model # Embeddings Size

Buckets 221 3.28m 3.7GB
Converted 221 2.76m 3.2GB
Explicit 4.39m 5.5GB

Mincount 15

Buckets 220 1.76m 2.0GB
Converted 220 1.59m 1.9GB
Buckets 221 2.81m 3.2GB
Converted 221 2.01m 2.3GB
Explicit 2.87m 3.3GB

Mincount 30

29 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Introspection

Introspection

30 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Introspection

1 How much of the word representation is encoded in ngrams?

2 Do explicit ngram lookups make a difference?

31 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Introspection

Known words: average of ngrams and a distinct word vector

→ leave out distinct word vector

Compare known and OOV representation.

Analyse similarity of known representation with most similar
ngram.

32 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Introspection

Known words: average of ngrams and a distinct word vector

→ leave out distinct word vector

Compare known and OOV representation.

Analyse similarity of known representation with most similar
ngram.

32 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Introspection

Model OOV Sim

Buckets 221 0.991
Explicit 0.993

Mincount 15

Buckets 220 0.983
Buckets 221 0.986
Explicit 0.988

Mincount 30

33 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Introspection

Model OOV Sim

Buckets 221 0.991
Explicit 0.993

Mincount 15

Buckets 220 0.983
Buckets 221 0.986
Explicit 0.988

Mincount 30

33 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Introspection

Virtually all information of known words is represented by
ngram embeddings.

→ Speed-space trade-off by discarding distinct word vectors
possible.
(mincount 15: −1.1m, mincount 30: −0.7m)

Slightly more similarity with less collisions.

→ Lower mincount has more collisions, but other interactions are
at play.

34 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Introspection

Model Top Sim

Buckets 221 0.516
Explicit 0.563

Mincount 15

Buckets 220 0.494
Buckets 221 0.532
Explicit 0.585

Mincount 30

→ Models rely more on single ngrams with clean lookups.

35 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Introspection

Model Top Sim

Buckets 221 0.516
Explicit 0.563

Mincount 15

Buckets 220 0.494
Buckets 221 0.532
Explicit 0.585

Mincount 30

→ Models rely more on single ngrams with clean lookups.

35 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Extrinsic Evaluation

Extrinsic Evaluation

36 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Evaluation

Tasks
→ Part-of-speech Tagging
→ Dependency Parsing

Data
→ TüBa-D/Z r11 (Telljohann et al., 2004)
→ Random splits: 70% Train, 10% Dev, 20% Val

All models were trained and evaluated with sticker4.

4https://github.com/stickeritis/sticker

37 / 51 Sebastian Pütz Insights into Subword Embeddings

https://github.com/stickeritis/sticker

References

Part-of-speech Tagging Setup

Setup

Tags: Concatenation of STTS and UD tags.

→ Possible to retrieve either tagset by splitting.
→ Beneficial for dependency parsing as sequence tagging.

Model: 3 stacked Bidirectional LSTMs with 400 hidden units
and Residual Connections

LR: 2000 linear warmup steps, followed by plateau scheduler

→ Stop after 15 epochs without improvement.

38 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Part-of-speech Tagging Setup

Setup

Tags: Concatenation of STTS and UD tags.

→ Possible to retrieve either tagset by splitting.
→ Beneficial for dependency parsing as sequence tagging.

Model: 3 stacked Bidirectional LSTMs with 400 hidden units
and Residual Connections

LR: 2000 linear warmup steps, followed by plateau scheduler

→ Stop after 15 epochs without improvement.

38 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Part-of-speech Tagging Results

Model Accuracy

Buckets 221 99.19
Converted 221 99.21
Explicit 99.21

Minimum Count 15

Buckets 221 99.18
Converted 221 99.19
Buckets 220 99.17
Converted 220 99.18
Explicit 30 99.19
Explicit 50 99.19
Explicit 125 99.21

Minimum Count 30

39 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Part-of-speech Tagging Results

Model Accuracy

Buckets 221 99.19
Converted 221 99.21
Explicit 99.21

Minimum Count 15

Buckets 221 99.18
Converted 221 99.19
Buckets 220 99.17
Converted 220 99.18
Explicit 30 99.19
Explicit 50 99.19
Explicit 125 99.21

Minimum Count 30

39 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Part-of-speech Tagging Results

Discussion:

Slight advantages for explicit and converted models.

Much smaller models achieve virtually the same score.

→ Converted 220 is only 60% of the size of Buckets 221

Training with bucket embeddings and evaluating with
converted embeddings hurts performance.

40 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Dependency Parsing Setup

Setup

Tags: Relative part-of-speech encoding

→ Part-of-speeches provided through 10-fold jackknifing.
→ UD version of TüBa-D/Z (Çöltekin et al., 2017)

Model: 3 stacked Bidirectional LSTMs with 600 hidden units
and Residual Connections, input includes POS embeddings.

LR: 2000 linear warmup steps, followed by plateau scheduler

→ Stop after 15 epochs without improvement.

Evaluation: Punctuation is discarded.

41 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Dependency Parsing Setup

Setup

Tags: Relative part-of-speech encoding

→ Part-of-speeches provided through 10-fold jackknifing.
→ UD version of TüBa-D/Z (Çöltekin et al., 2017)

Model: 3 stacked Bidirectional LSTMs with 600 hidden units
and Residual Connections, input includes POS embeddings.

LR: 2000 linear warmup steps, followed by plateau scheduler

→ Stop after 15 epochs without improvement.

Evaluation: Punctuation is discarded.

41 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Dependency Parsing Setup

Setup

Tags: Relative part-of-speech encoding

→ Part-of-speeches provided through 10-fold jackknifing.
→ UD version of TüBa-D/Z (Çöltekin et al., 2017)

Model: 3 stacked Bidirectional LSTMs with 600 hidden units
and Residual Connections, input includes POS embeddings.

LR: 2000 linear warmup steps, followed by plateau scheduler

→ Stop after 15 epochs without improvement.

Evaluation: Punctuation is discarded.

41 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Dependency Parsing Results

Model LAS UAS

Buckets 221 93.50 94.89
Converted 221 93.55 94.91
Explicit 93.48 94.86

Minimum Count 15

Buckets 221 93.42 94.84
Converted 221 93.56 94.93
Buckets 220 93.52 94.92
Converted 220 93.54 94.91
Explicit 30 93.48 94.86
Explicit 50 93.56 94.88
Explicit 125 93.51 94.89

Minimum Count 30

42 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Dependency Parsing Results

Model LAS UAS

Buckets 221 93.50 94.89
Converted 221 93.55 94.91
Explicit 93.48 94.86

Minimum Count 15

Buckets 221 93.42 94.84
Converted 221 93.56 94.93
Buckets 220 93.52 94.92
Converted 220 93.54 94.91
Explicit 30 93.48 94.86
Explicit 50 93.56 94.88
Explicit 125 93.51 94.89

Minimum Count 30

42 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Dependency Parsing Results

Discussion:

Converted models beat the corresponding Bucket models.

220 buckets performs unexpectedly well: +0.1 LAS vs. 221

Explicit lookups don’t seem to offer improvements.

No change in accuracy when using converted models to
predict.

43 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Conclusion

Conclusion:

Subword embeddings hold almost the full information.

→ Speed-space tradeoff by discarding word vectors.

Only small effect on downstream models.

→ Large capacity of the considered models might lower impact of
embeddings.

→ More collisions do not hurt performance on the given tasks.

Converting bucket to explicit models is beneficial.

→ Downsizes the model while improving performance.

44 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Outlook

Outlook:

Evaluate how explicit lookups interact with pretraining.

Fine-tune downsized embeddings on downstream tasks.

45 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Thank you

Thank you for your attention!

46 / 51 Sebastian Pütz Insights into Subword Embeddings

References

References I

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. 2017. Enriching word vectors with subword
information. Transactions of the Association of Computational
Linguistics 5(1):135–146.

Çağrı Çöltekin, Ben Campbell, Erhard Hinrichs, and Heike
Telljohann. 2017. Converting the tüba-d/z treebank of german
to universal dependencies. In Proceedings of the NoDaLiDa
2017 Workshop on Universal Dependencies (UDW 2017). pages
27–37.

Daniël de Kok and Sebastian Pütz. 2019. Tüba-d/dp stylebook.

47 / 51 Sebastian Pütz Insights into Subword Embeddings

References

References II

Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso. 2015.
Two/too simple adaptations of word2vec for syntax problems. In
Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational
Linguistics.

Tomas Mikolov, Kai Chen, and Greg Corrado. 2013. Efficient
estimation of word representations in vector space .

Michalina Strzyz, David Vilares, and Carlos Gómez-Rodŕıguez.
2019. Viable dependency parsing as sequence labeling. arXiv
preprint arXiv:1902.10505 .

48 / 51 Sebastian Pütz Insights into Subword Embeddings

References

References III

Heike Telljohann, Erhard Hinrichs, Sandra Kübler, and Ra Kübler.
2004. The tüba-d/z treebank: Annotating german with a
context-free backbone. In In Proceedings of the Fourth
International Conference on Language Resources and Evaluation
(LREC 2004 . Citeseer.

49 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Part-of-speech Tagging Results

Model Accuracy

Buckets 15/21 99.19
Explicit 15/15 99.21
Converted 15/21 99.21

Buckets 30/21 99.18
Converted 30/21 99.19
Buckets 30/20 99.17
Converted 30/20 99.18
Explicit 30/30 99.19

Expl 30/50 99.19
Expl 30/100 99.14
Expl 30/125 99.21

50 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Dependency Parsing Results

Model LAS UAS

Buckets 221 93.50 94.89
Converted 221 93.55 94.91
Explicit 93.48 94.86

Minimum Count 15

Buckets 221 93.42 94.84
Converted 221 93.56 94.93
Buckets 220 93.52 94.92
Converted 220 93.54 94.91
Explicit 93.48 94.86

Minimum Count 30

Explicit 30/50 93.56 94.88
Explicit 30/100 93.52 94.90
Explicit 30/125 93.51 94.89

51 / 51 Sebastian Pütz Insights into Subword Embeddings

References

Dependency Parsing Results

Model LAS UAS

Buckets 221 93.50 94.89
Converted 221 93.55 94.91
Explicit 93.48 94.86

Minimum Count 15

Buckets 221 93.42 94.84
Converted 221 93.56 94.93
Buckets 220 93.52 94.92
Converted 220 93.54 94.91
Explicit 93.48 94.86

Minimum Count 30

Explicit 30/50 93.56 94.88
Explicit 30/100 93.52 94.90
Explicit 30/125 93.51 94.89

51 / 51 Sebastian Pütz Insights into Subword Embeddings

	References

